Fatigue endurance limit and crack front evolution in metallic glass
نویسندگان
چکیده
منابع مشابه
Near-threshold fatigue crack growth in bulk metallic glass composites
A major drawback in using bulk metallic glasses (BMGs) as structural materials is their extremely poor fatigue performance. One way to alleviate this problem is through the composite route, in which second phases are introduced into the glass to arrest crack growth. In this paper, the fatigue crack growth behavior of in situ reinforced BMGs with crystalline dendrites, which are tailored to impa...
متن کاملFracture toughness and fatigue-crack propagation in a Zr–Ti–Ni–Cu–Be bulk metallic glass
The recent development of metallic alloy systems which can be processed with an amorphous structure over large dimensions, specifically to form metallic glasses at low cooling rates ~;10 K/s!, has permitted novel measurements of important mechanical properties. These include, for example, fatigue-crack growth and fracture toughness behavior, representing the conditions governing the subcritical...
متن کاملMechanisms for Fracture and Fatigue-Crack Propagation in a Bulk Metallic Glass
The fracture and fatigue properties of a newly developed bulk metallic glass alloy, Zr41.2Ti13.8Cu12.5 Ni10Be22.5 (at. pct), have been examined. Experimental measurements using conventional fatigue precracked compact-tension C(T) specimens (,7-mm thick) indicated that the fully amorphous alloy has a plane-strain fracture toughness comparable to polycrystalline aluminum alloys. However, signific...
متن کاملFatigue Crack Growth Rate Model for Metallic Alloys
A model has been created to allow the quantitative estimation of the fatigue crack growth rate in steels as a function of mechanical properties, test–specimen characteristics, stress–intensity range and test–frequency. With this design, the remarkable result is that the method which is based on steels, can be used without modification, and without any prior fatigue test, to estimate the crack g...
متن کاملSuper elastic strain limit in metallic glass films
On monolithic Ni-Nb metallic glass films, we experimentally revealed 6.6% elastic strain limit by in-situ transmission electron microscopy observations. The origin of high elastic strain limit may link with high free volume in the film, causing the rearrangement of loosely bonded atomic clusters (or atoms) upon elastic deformation. This high elastic limit of metallic glass films will shed light...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Fatigue
سال: 2021
ISSN: 0142-1123
DOI: 10.1016/j.ijfatigue.2020.106004